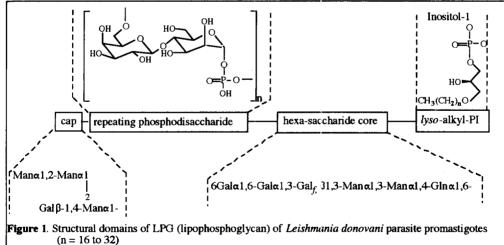


Synthesis of the Phosphodisaccharide Repeat of Antigenic Lipophosphoglycan of Leishmania donovani Parasite


Mani Upreti and Ram A. Vishwakarma*

Bio-organic Chemistry Laboratory National Institute of Immunology Aruna Asaf Ali Marg, JNU Complex New Delhi 110067, India

Received 2 December 1998; accepted 25 January 1999

Abstract: Synthesis of the immunologically important and structurally unusual phosphodisaccharide repeat unit (Galp1.4 β -Manp-1 α -phosphate) of the lipophosphoglycan cell surface GPI molecule of the protozoan parasite *Leishmania donovani* has been carried out using lactose as the starting material. The synthesis provides a short and stereoselective route for the preparation of this phosphosaccharide in a preparative scale. © 1999 Published by Elsevier Science Ltd. All rights reserved.

Lipophosphoglycan (LPG) is the major glycoconjugate expressed on the cell surface of the promastigotes of the protozoan parasite *Leishmania donovani* which causes human visceral leishmaniasis (kala-azar) by infecting macrophages and subverting the host immune system (reviewed in ref. 1). The structure² of LPG consists of four distinct domains: (i) a 1-O-alkyl-2-lysophosphatidyl(myo)inositol anchor; (ii) a conserved hexasaccharide core; (iii) a variable and highly negative charged repeating phosphodisaccharide of galactose and mannose residues; and (iv) a neutral mannose cap (Figure 1). The unique feature of the LPG structure is a phosphorylated disaccharide repeating sequence of $[6Galp-\beta 1,4-Manp-\alpha 1-phosphate]_n$ which provides a helical conformation.³ The 1,4- β stereochemistry between Gal and Man is unique among eukaryotic carbohydrates. The number of the repeats is developmentally regulated⁴ and multiplies during metacyclogenesis of the parasite. LPG is antigenic and a key virulence factor necessary for parasite infectivity and intracellular survival in macrophages by

inhibition⁵ of protein kinase C mediated signal transduction and related gene transcription.^{6,7} The biosynthesis of the phosphodisaccharide repeat domain of LPG has been of considerable interest recently and a new enzyme α -D-mannosylphosphate-transferase has been identified⁸ which utilises GDP-Man as the nucleotide sugar donor for transfer of mannose-1- α -phosphate to a Gal β 1,4-Man-1- α -phosphate acceptor.⁹ Immunological studies have shown the phosphosaccharide repeats as major epitopes presented¹⁰ on the macrophage surface

after processing of the parasitic antigenic molecules; monoclonal antibodies have also been raised recognising repeats. The LPG and its immunological role in host-parasite interaction has led to synthetic interest^{11,12} and the assembly of phosphosaccharide repeat domains has been viewed as a target for development of chemotherapeutic agents, since this biosynthetic process also occurs in dividing intracellular amastigote forms of the parasite that propagate disease. Recently Nikolaev et. al.¹² reported a H-phosphonate chemistry based approach towards the phosphodisaccharide repeat and higher oligomers using the monosaccharide building blocks galactose and mannose.

In our ongoing work 13,14 on the chemistry of GPI related molecules of *Leishmania donovani*, we decided to explore the possibility of using synthetic phosphodisaccharide repeat and higher oligomers as antigenic molecules. Herein we report a new and efficient synthesis of the phosphodisaccharide repeat $Galp-\beta1,4-Manp-1-O-\alpha$ -phosphate using readily available lactose as the starting material. The important features of this approach include, (a) a gluco-manno transformation *via* glycal chemistry to convert lactose $(Gal-\beta1,4-Glu)$ into the intermediate disaccharide $Gal-\beta1,4-Man$; this avoided several protection/deprotection/glycosidation steps required in the synthesis from monosaccharide building blocks, (b) 1-O-deacylation and stereoselective phosphorylation to obtain the desired α -phosphate. The target phosphodisaccharide repeat 8 was synthesised from lactose as shown in Scheme 1.

The key intermediate hexa-O-acetyl lactal (2) was prepared from lactose by procedures used 15 in glycal chemistry (per-acetylation, anomeric bromination and Zn-AcOH mediated reductive elimination) in overall 58 % yield in three steps. The hexa-O-acetyl lactal, [α]_D -18 (c 1.0, CHCl₃)¹⁵ was deacetylated using Na₂CO₃ in MeOH to give the lactal 3 (100 % yield, $[\alpha]_D$ +27 (c 1.6, H₂O)^{1.5} which on treatment with m-chloroperoxy benzoic acid led to β-D-galactopyranosyl-(1-4)-α-D-mannopyranose (4)¹⁵ in 90 % yield¹⁶, and 10 % β-anomer. This was acetylated by acetic anhydride/pyridine to give 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl)-α-D-mannopyranose (5) as the major isomer which was purified by column chromatography, [α]_D+17.7 (c 0.9, CHCl₃); the 1-αH stereochemistry of the mannosyl residue was ascertained from NMR data (δ 6, d, J 1.9 Hz). The regioselective deacetylation of 5 at the anomeric position was carried out using saturated dimethylamine in acetonitrile at -20 °C to give 2.3.6-tri-O-acetyl-4-O-(2.3.4.6-tetra-O-acetyl-β-Dgalactopyranosyl)-\(\alpha\)-D-mannose (6) in quantitative yield.\(^{17}\) Stereoselective diphenylphosphorylation\(^{18}\) (diphenylphosphorochloridate, BuLi, -78 ⁰C, 20 min) led to 1-O-α-diphenylphosphate as the major isomer after column chromatography which was characterised as 2,3,6-tri-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-Dgalactopyranosyl)-α-D-mannopyranosyl diphenyl phosphate (7, yield 47%). The α-stereochemistry of the diphenylphosphoryl group on the mannosyl residue was established by ¹H NMR which showed an anomeric proton, H-1, at δ 5.83 (dd, J6.7, 1.9 Hz) with characteristic heteronuclear ¹H-³¹P coupling of 6.7 Hz, and ³¹P NMR at -13 ppm (for full spectral data see ref. 19). This was also confirmed by correlation of NMR data of 7 with those of 1-O-α-mannosylphosphate. The protected α-diphenylphosphate (7) was hydrogenated in a Parr hydrogenator at 55 psi using Adams' catalyst (Pt₂O) to give the corresponding hepta-acetyl-phosphate which on further treatment with methanol-triethylamine-water (2:1:1) at 0 ⁰C provided the desired β-D-galactopyranosyl-(1-4)- α -D-mannopyranosyl phosphate triethylammonium salt (8)²⁰ in 77 % yield. The H-1 signals of the α -Dmannosylphosphate (5.27, $J_{1H,P}$ 6.8 and $J_{1,2}$ 1.9 Hz) and β -D-galactopyranosyl (4.38, $J_{1,2}$: 7.6 Hz) residues of 8 were unambiguously assigned by ¹H-¹H gradient-COSY, 2D-TOCSY (total correlation spectroscopy) and 31P NMR experiments. The α-configuration of the mannosyl phosphate fragment was further confirmed from the chemical shift positions of C-3 (70.07 ppm) and C-5 (73.67 ppm) signals of 8; the latter values were close to that of the C-3 and C-5 signals of α-D-mannopyranosyl phosphate 18 taking into account the influence

of the \(\beta\)-D-galactopyranosyl substituent at the 4 position.

Considering that $Galp-\beta 1,4Manp-1-O-\alpha$ -phosphate is immunologically important and serves as a biosynthetic substrate for the unique parasitic enzyme GDP-Man: $Gal\beta 1,4Man\alpha-1$ phosphate: α -mannosyl phosphate-transferase, the synthesis presented here will enable design of synthetic immunogenic and antiparasitic enzyme inhibitors.

Acknowledgement: Authors wish to thank Dr Sandip. K. Basu, Director NII and the Department of Science & Technology (Govt of India) for financial support (Grant No. SP/SO/D-31/95), and CSIR New Delhi for research associate fellowship to MU.

REFERENCES AND NOTES

- Turco, S. J; Descoteaux A. Annu. Rev. Microbiol. 1992, 46, 65-94; McConville M. J.; Ferguson M. A. J. Biochem. J. 1993, 294, 305-324.
- Turco, S. J.; Hull, S. R.; Orlandi, P.A. Jr.; Shepherd, S. D.; Homans, S. W.; Dwek, R. A.; Rademacher, T. W. Biochemistry 1987, 26, 6233-6238; Turco, S. J.; Orlandi, P.A. Jr.; Homans, S. W.; Ferguson M. A. J.; Dwek, R. A.; Rademacher, T. W. J. Biol. Chem. 1989, 264, 6711-6715; Orlandi, P. A. Jr.; Turco, S. J. J. Biol. Chem. 1987, 262, 10384-10391; McConville, M. J.; Thomas-Oates, J. E.; Ferguson, M. A. J.; Homans, S. W. J Biol Chem. 1990, 265, 19611-19623.
- 3. Homans, S. W.; Mehlert, A.; Turco, S. J. Biochemistry 1992, 31, 654-661.

- 4. McConville, M. J.; Turco, S. J.; Ferguson, M. A. J.; Sacks, D. L. EMBO. J. 1992, 11, 3593-3600.
- Giorgione, J. R.; Turco, S. J.; Epand, R. M. Proc. Natl. Acad. Sci., USA 1996, 93, 11634-11639; Descoteaux, A.;
 Matlashewski, G; Turco, S. J. J. Immunol. 1992, 149, 3008-3015; Descoteaux, A.; Turco, S. J.; Sachs, D. L.;
 Matlashewski, G. J. Immunol. 1991, 146, 2747-2753; McNeely, T. B.; Turco, S. J. J. Immunol. 1990, 144, 2745-2750.
- 6. Proudfoot, L.; Nikolaev, A. V.; Feng, G.-J.; Wei, X-Q.; Ferguson, M. A. J.; Brimacombe, J. S.; Liew, F. Y. *Proc. Natl. Acad. Sci., USA* 1996, 93, 10984-10989.
- 7. Ho, J. L.; Kim, H-K.; Sass, P. M.; He, S.; Geng, J.; Xu, H.; Zhu, B.; Turco, S. J.; Lo, S. K.J. Immunol. 1996, 157, 3013-3020.
- 8. Carver, M. A.; Turco, S. J. J. Biol. Chem. 1991, 266, 10974-10981; Carver, M. A.; Turco, S. J. Arch. Biochem. Biophys. 1992, 295, 309-317.
- Brown, G. M.; Miller, A. R.; Masterson, C.; Brimacombe. J. S.; Nikolaev, A. V.; Ferguson, M. A. J. Eur. J. Biochem.
 1996, 242, 410-416.
- 10. Tolson, D. L.; Turco, S. J.; Pearson, T. W. Infect. Immun. 1990, 58, 3500-3507.
- 11. Arasappan, A; Fraser-Reid, B. J. Org. Chem. 1996, 61, 2401-2406.
- 12. Nikolaev, A. V.; Rutherford, T. J.; Ferguson, M. A. J.; Brimacombe, J. S. J. Chem. Soc. Perkin Trans 1 1995, 1977-1987.; Nikolaev, A. V.; Chudek, J. A.; Ferguson, M. A. J. Carbohydr. Res. 1995, 272, 179-189.
- 13. Sahai, P.; Vishwakarma, R. A. J. Chem. Soc. Perkin Trans 1 1997, 1845-1949.
- 14. Tyagi, A. K.; Vishwakarma, R. A. Tetrahedron Lett. 1998, 39, 6069-6072.
- 15. Haworth, W. N.; Hirst, E. L.; Plant, M. M. T.; Reynolds, R. J. W. J. Chem. Soc. 1930, 2644-2653.
- 16. Spectral data of compound 4: $[\alpha]_D = +27$ (c 1.5, $H_2O)^{15}$; 1H NMR 300 MHz (D₂O) 5.12 (1H, d, J = 1.67, H-1 of α -anomer), 4.85 (d, J = 0.98, H-1 of minor β anomer), 4.40-4.36 (2H, m, H-1' and H-4), 3.75 (1H, dd, H-2'), 3.94-3.92 (2H, m, H-4' and H-2), 3.89-3.83 (2H, m, H-6'), 3.81-3.79 (1H, dd, J₃,4 = 6, J₃,2 = 2, H-3), 3.75-3.71 (2H, m, H-6), 3.63-3.59 (1H, br dd, H-3'), 3.51-3.46 (2H, m, H-5, H-5'); MS (ES⁻) 341 [M-H]⁻; HRMS (FAB⁺):m/z 365.106559 [M+Na]⁺ (C₁₂H₂₂O₁₁Na requires 365.105982).
- 17. Spectral data of compound **6**: $[\alpha]_D = +20$ (c 0.63, CHCl₃); ¹H NMR (CDCl₃) 5.45 (1H, br d, H-4'), 5.42 (1H, d, J₃,₂ = 3, H-3), 5.38 (1H, dd, H-2), 5.22 (1H, dd, J₁,₂ = 1.5, J_{1,OH} = 3.0, H-1), 5.11 (1H, m, H-2'), 4.95 (1H, dd, J₃',₄' = 3.4, H-3'), 4.53 (1H, d, J₁',₂' = 7.9, H-1'), 4.43 (1H, dd, J₄,₅ = J₃,₄ = 9.69, H-4), 4.2-4.0 (2H, m, H-6), 4.15 (1H, m, H-5), 3.91 (1H, br dd, H-5'), 3.80-3.90 (2H, m, H-6'), 1.8-2.2 (21H, 7 x s, COMe); MS (ES⁺), 636 [M]⁺; HRMS (FAB⁺):m/z 659.178990 [M+Na]⁺ (C₂₆H₃₆O₁₈Na requires 659.179935).
- 18. Boger, D. L.; Honda, T. J. Am. Chem. Soc. 1994, 116, 5647-5656.; Sebasan, S.; Neira, S. Carbohydr. Res. 1992, 223, 169-185.
- 19. Spectral data of compound 7: [α]_D = +1.93 (c 0.46, CHCl₃); ¹H NMR (CDCl₃, assignments confirmed by 2D COSY and TOCSY experiments) 7.36-7.26 (10H, m, 2 x Ph), 5.83 (1H, dd, J_{1H-P} = 6.7, J_{1,2} = 1.9, H-1), 5.40 (1H, m, H-3), 5.35 (1H, br d, H-4') 5.30 (1H, m, H-2), 5.13 (1H, m, H-2'), 4.96 (1H, dd, J_{3'}, 4' = 3.4, H-3'), 4.54 (1H, d, J_{1',2'} = 7.89, H-1'), 4.47 (1H, d, J_{4,5} = 7.81, H-4), 4.24-4.13 (2H, m, H-6), 4.15 (1H, m, H-5), 3.80-3.95 (2H, m, H-6'), 3.96 (2H, m, H-5'), 1.8-2.2 (21H, 7 x s, COMe); ³¹P NMR, -13.0 (external reference H₃PO₄); MS (ES⁺), 891 [M+Na]⁺; HRMS (FAB⁺):m/z 891.217085 [M+Na]⁺ (C₃8H₄SO₂1NaP requires 891.208867).
- 20. Spectral data of compound 8: $[\alpha]_D = +10$ (c 0.1, H₂O); 1H NMR (D₂O, assignments confirmed by 2D COSY and TOCSY experiments, 5.27 (1H, dd, J_{1H-P} = 6.8, J_{1,2} = 1.9, H-1), 4.38 (1H, d, J_{1',2'} = 7.6, H-1'), 4.38 (1H, d, J_{4,5} = 9.65, H-4), 3.94 (1H, m, H-2), 3.83 (1H, m, H-4'), 3.83 (2H, m, H-6'), 3.76 (1H, t, J_{3,4} = 7.11, J_{3,2} = 2.64, H-3), 3.68 (2H, m, H-6), 3.56-3.53 (2H, m, H-2, H-3'), 3.60 (1H, m, H-5'), 3.46 (1H, m, H-5), 3.45 (1H, dd, J_{1',2'} = 6.67, J_{2',3'} = 1.5, H-2'); ^{31}P NMR, -2.07 (external reference H₃PO₄); HRMS (ES'): 421.27185 [M-1H]⁻ (C₁₂H₂₂O₁₄P requires 421.27200).